GetAddr message structure - Bitcoin Stack Exchange

Flatten the Curve. #49. Let's Dig into Jade Helm. AI. The Surveillance State. Internet of Things. FISA. Pentagon Preparing for Mass Civil Breakdown. What is Mob Excess Deterrent Using Silent Audio? Stay Aware and Get Ahead of the Curve.

Flatten the Curve. Part 48. Source Here
It's getting crazier day by day now, so are you following the Boy Scout motto?
On this topic, Baden-Powell says: Remember your motto, "Be Prepared." Be prepared for accidents by learning beforehand what you ought to do in the different kinds that are likely to occur. Be prepared to do that thing the moment the accident does occur. In Scouting for Boys, Baden-Powell wrote that to Be Prepared means “you are always in a state of readiness in mind and body to do your duty.”
Why should you be prepared? Because TPTB have been preparing, that’s why.
June 12, 2014: The Guardian • Pentagon preparing for mass civil breakdown. Social science is being militarised to develop 'operational tools' to target peaceful activists and protest movements Source Here
Pentagon preparing for mass civil breakdown. It seemed ludicrous back in 2014, didn't it? Inconceivable. Sure some preppers believed it, but they're always getting ready and nothing happened. Doomsday was always right around the corner, and then the next corner, and on and on. Televangelists have probably accused more politicians of being the antichrist than the number of politicians went to Epstein's Island.
But why would they be preparing for mass civil breakdown? Could it be the same reason as why the miltary is preparing for war, droughts and famines brought about by environmental collapse?
February 20, 2020: History Network • Here’s Why These Six Ancient Civilizations Mysteriously Collapsed. From the Maya to Greenland’s Vikings, check out six civilizations that seemingly disappeared without a trace. Source Here
All of these civilizations vanished because of some combination of exhausting their natural resources, drought, plauge, and the little ice age. Sound familiar? Don't tell me that the Rockefeller Foundation and BlackRock became environmentally aware out of a sense of obligation to the planet. They're setting the groundwork for what's coming down the pipe. This isn't about money anymore, this is about control and survival. Throw out the rulebook because the rules no longer apply.
Do you think the surveillance system is for your protection, or the protection of the state? Don't you think that an era of upcoming calamities will severely damage the communication networks, and thus the surveillance system? It might be prudent to consider that Starlink is being established to make the system redundant, so that they never lose track of the precious worker bees before they can be connected to the AI hive mind, right Elon? Neuralink, don't leave home without it.
But let's not forget about the wonderful world of the Internet of Things.
March 15, 2012 • More and more personal and household devices are connecting to the internet, from your television to your car navigation systems to your light switches. CIA Director David Petraeus cannot wait to spy on you through them. Earlier this month, Petraeus mused about the emergence of an "Internet of Things" -- that is, wired devices -- at a summit for In-Q-Tel, the CIA's venture capital firm. "'Transformational' is an overused word, but I do believe it properly applies to these technologies," Petraeus enthused, "particularly to their effect on clandestine tradecraft." All those new online devices are a treasure trove of data if you're a "person of interest" to the spy community. Once upon a time, spies had to place a bug in your chandelier to hear your conversation. With the rise of the "smart home," you'd be sending tagged, geolocated data that a spy agency can intercept in real time when you use the lighting app on your phone to adjust your living room's ambiance. "Items of interest will be located, identified, monitored, and remotely controlled through technologies such as radio-frequency identification, sensor networks, tiny embedded servers, and energy harvesters -- all connected to the next-generation internet using abundant, low-cost, and high-power computing," Petraeus said, "the latter now going to cloud computing, in many areas greater and greater supercomputing, and, ultimately, heading to quantum computing." Petraeus allowed that these household spy devices "change our notions of secrecy" and prompt a rethink of "our notions of identity and secrecy." All of which is true -- if convenient for a CIA director. The CIA has a lot of legal restrictions against spying on American citizens. But collecting ambient geolocation data from devices is a grayer area, especially after the 2008 carve-outs to the Foreign Intelligence Surveillance Act. Hardware manufacturers, it turns out, store a trove of geolocation data; and some legislators have grown alarmed at how easy it is for the government to track you through your phone or PlayStation. That's not the only data exploit intriguing Petraeus. He's interested in creating new online identities for his undercover spies -- and sweeping away the "digital footprints" of agents who suddenly need to vanish. "Proud parents document the arrival and growth of their future CIA officer in all forms of social media that the world can access for decades to come," Petraeus observed. "Moreover, we have to figure out how to create the digital footprint for new identities for some officers." Source Here
December 19, 2019: New York Times • THE DATA REVIEWED BY TIMES OPINION didn’t come from a telecom or giant tech company, nor did it come from a governmental surveillance operation. It originated from a location data company, one of dozens quietly collecting precise movements using software slipped onto mobile phone apps. You’ve probably never heard of most of the companies — and yet to anyone who has access to this data, your life is an open book. They can see the places you go every moment of the day, whom you meet with or spend the night with, where you pray, whether you visit a methadone clinic, a psychiatrist’s office or a massage parlor. The Times and other news organizations have reported on smartphone tracking in the past. But never with a data set so large. Even still, this file represents just a small slice of what’s collected and sold every day by the location tracking industry — surveillance so omnipresent in our digital lives that it now seems impossible for anyone to avoid. It doesn’t take much imagination to conjure the powers such always-on surveillance can provide an authoritarian regime like China’s. Within America’s own representative democracy, citizens would surely rise up in outrage if the government attempted to mandate that every person above the age of 12 carry a tracking device that revealed their location 24 hours a day. Yet, in the decade since Apple’s App Store was created, Americans have, app by app, consented to just such a system run by private companies. Now, as the decade ends, tens of millions of Americans, including many children, find themselves carrying spies in their pockets during the day and leaving them beside their beds at night — even though the corporations that control their data are far less accountable than the government would be. Source Here
The IoT should be renamed to IoTT (Internet of Tracking Things), shouldn't it. But we can't have people figure out what's really happening, can we? It's a good thing that quantum computing isn't too close, isn’t it?
April 5, 2018: Global News • (Project Maven) Over 3,000 Google employees have a signed a petition in protest against the company’s involvement with a U.S. Department of Defense artificial intelligence (AI) project that studies imagery and could eventually be used to improve drone strikes in the battlefield. Source Here
December 12, 2019 • Palantir took over Project Maven defense contract after Google backed out. Source Here
December 29, 2020: Input • Palantir exec says its work is on par with the Manhattan Project. Comparing AI to most lethal weapon in human history isn’t comforting. SourceHere
August 14, 2020: Venture: • Google researchers use quantum computing to help improve image classification. Source Here
Hmmm. Maybe Apple will be for the little guy? They have always valued privacy rights, right?
October 2, 2013: Vice News • The hacktivist group Anonymous released a video statement with an accompanying Pastebin document claiming that there are definitive links between AuthenTec, the company that developed the iPhone 5S’s fingerprint scanner, and the US government. Source Here
An apple a day helps the NSA. Or Google. Or Microsoft. Or Amazon. Take your pick from the basket, because dem Apple's are all the same. But at least we have fundamental rights, right?
Foreign agent declaration not required • No mention of foreign agent status is made in the Protect America Act of 2007. Under prior FISA rules, persons targeted for surveillance must have been declared as foreign agents before a FISA warrant would be accorded by the FISC court.
'Quasi-anti-terrorism law' for all-forms of intelligence collection • Vastly marketed by U.S. federal and military agencies as a law to prevent terror attacks, the Protect America Act was actually a law focused on the 'acquisition' of desired intelligence information, of unspecified nature. The sole requirement is geolocation outside the United States at time of Directive invocation; pursuant to Authorization or Order invocation, surveillance Directives can be undertaken towards persons targeted for intelligence information gathering. Implementation of Directives can take place inside the United States or outside the United States. No criminal or terrorism investigation of the person need be in play at time of the Directive. All that need be required is that the target be related to an official desire for intelligence information gathering for actions on part of persons involved in surveillance to be granted full immunity from U.S. criminal or civil procedures, under Section 105B(l) of the Act.
Removal of FISA Strictures from warrant authorization; warrants not required • But the most striking aspect of the Protect America Act was the notation that any information gathering did not comprise electronic surveillance. This wording had the effect of removing FISA-related strictures from Protect America Act 2007-related Directives, serving to remove a number of protections for persons targeted, and requirements for persons working for U.S. intelligence agencies.
The acquisition does not constitute electronic surveillance • The removal of the term electronic surveillance from any Protect America Act Directive implied that the FISC court approval was no longer required, as FISA warrants were no longer required. In the place of a warrant was a certification, made by U.S. intelligence officers, which was copied to the Court. In effect, the FISC became less of a court than a registry of pre-approved certifications.Certifications (in place of FISA warrants) were able to be levied ex post facto, in writing to the Court no more than 72 hours after it was made. The Attorney General was to transmit as soon as possible to the Court a sealed copy of the certification that would remain sealed unless the certification was needed to determine the legality of the acquisition.Source Here
Oh. FISA is basically a rubber stamp. And even if it the stage play wasn't pretending to follow the script, would it matter? Who could actually stop it at this point? The cat's out of the bag and Pandoras Box is open.
Controversial debates arose as the Protect America Act was published. Constitutional lawyers and civil liberties experts expressed concerns that this Act authorized massive, wide-ranging information gathering with no oversight. Whereas it placed much focus on communications, the Act allowed for information gathering of all shapes and forms. The ACLU called it the "Police America Act" – "authorized a massive surveillance dragnet", calling the blank-check oversight provisions "meaningless," and calling them a "phony court review of secret procedures."
So the surveillance state doesn't have checks and balances anymore. The state is preparing for Massive Civil Breakdown. They keep warning us about environmental collapse. Got it? Good. Let's keep on keeping on.
The District of Columbia Organic Act of 1871 created a single new district corporation governing the entire federal territory, called the District of Columbia, thus dissolving the three major political subdivisions of the District (Port of Georgetown, the City of Washington, and Washington County) and their governments. Source Here)
The first big leap in corporate personhood from holding mere property and contract rights to possessing more expansive rights was a claim that the Equal Protection Clause applied to corporations. One of the strangest twists in American constitutional law was the moment that corporations gained personhood under the Equal Protection Clause of the Fourteenth Amendment. It occurred in a case called Santa Clara County, and what was odd was that the Supreme Court did not really even decide the matter in the actual opinion. It only appeared in a footnote to the case. What we are likely to have at the conclusion of the Supreme Court term is corporations that are empowered to spend in American elections because of Bellotti and Citizens United; corporations that can make religious objections thanks to Hobby Lobby; and if Jesner turns out as badly as I predict, corporations will be able to aid and abet human rights violations abroad with impunity. Source Here
"Having a corporation would allow people to put property into a collective ownership that could be held with perpetual existence," she says. "So it wouldn't be tied to any one person's lifespan, or subject necessarily to laws regarding inheriting property." Later on, in the United States and elsewhere, the advantages of incorporation were essential to efficient and secure economic development. Unlike partnerships, the corporation continued to exist even if a partner died; there was no unanimity required to do something; shareholders could not be sued individually, only the corporation as a whole, so investors only risked as much as they put into buying shares. Source Here
The way that the Arab Bank may get away with this alleged morally troubling behavior, even though it has a New York branch, is by reasserting the basic argument that was made in Nestle USA and Kiobel II: that the federal Alien Tort Statute was not intended to apply to corporations full stop. Given other cases in this area like Mohamad v. PLO, which held the word “individual” in the Torture Victim Protection Act means a natural person and does not impose any liability against organizations, the Arab Bank’s procorporate argument may well prevail. There are multiple federal Circuit Courts which have shot down the argument that corporations are immune from suit under the Alien Tort Statute. The lone outlier is the Second Circuit, which decided in 2010 that corporations are excused from suit in Kiobel I. This is the case that was appealed to the Supreme Court and became Kiobel II. Jesner v. Arab Bank was litigated in the Second Circuit. One question in Jesner was what exactly did Kiobel II do to Kiobel I. So far in the litigation, Jesner concluded that Kiobel I and its conclusion that corporations can’t be sued in federal court using the Alien Tort Statute remained the controlling law of the Second Circuit.
There's a reason people call lawyers snakes, it's because most of them speak with forked tounges. So the corporation isn't being held liable, but the shareholders can't be held liable either. That's too insane to even be called a Catch 22. We are literally being set up to have no recourse because there isn’t anybody who can be held responsible. Why is that important when I've been talking about the surveillance state?
July 14, 2020: The Intercept • Microsoft’s police surveillance services are often opaque because the company sells little in the way of its own policing products. It instead offers an array of “general purpose” Azure cloud services, such as machine learning and predictive analytics tools like Power BI (business intelligence) and Cognitive Services, which can be used by law enforcement agencies and surveillance vendors to build their own software or solutions. A rich array of Microsoft’s cloud-based offerings is on full display with a concept called “The Connected Officer.” Microsoft situates this concept as part of the Internet of Things, or IoT, in which gadgets are connected to online servers and thus made more useful. “The Connected Officer,” Microsoft has written, will “bring IoT to policing.” With the Internet of Things, physical objects are assigned unique identifiers and transfer data over networks in an automated fashion. If a police officer draws a gun from its holster, for example, a notification can be sent over the network to alert other officers there may be danger. Real Time Crime Centers could then locate the officer on a map and monitor the situation from a command and control center. Source Here
Uhm, I guess it's really is all connected, isn’t it?
June 18, 2020: The Guardian • How Target, Google, Bank of America and Microsoft quietly fund police through private donations. More than 25 large corporations in the past three years have contributed funding to private police foundations, new report says. Source Here
Long live the Military Industrial Techno Surveillance State. If you have nothing to hide, than you have nothing to worry about. Really? Are we still believing that line? Cause it's a load of crap. If we have nothing to worry about, then why are they worried enough to be implementing surveillance systems with corresponding units on the ground? Got your attention there, didn't I?
August 19, 2019: Big Think • Though the term "Orwellian" easily applies to such a technology, Michel's illuminating reporting touches something deeper. Numerous American cities have already been surveilled using these god-like cameras, including Gorgon Stare, a camera-enabled drone that can track individuals over a 50-square kilometer radius from 20,000 feet. Here's the real rub: the feature that allows users to pinch and zoom on Instagram is similar to what WAMI allows. Anything within those 50-square kilometers is now under the microscope. If this sounds like some futuristic tech, think again: Derivations of this camera system have been tested in numerous American cities. Say there is a big public protest. With this camera you can follow thousands of protesters back to their homes. Now you have a list of the home addresses of all the people involved in a political movement. If on their way home you witness them committing some crime—breaking a traffic regulation or frequenting a location that is known to be involved in the drug trade—you can use that surveillance data against them to essentially shut them up. That's why we have laws that prevent the use of surveillance technologies because it is human instinct to abuse them. That's why we need controls. Source Here
Want to know more about the Gorgon Stare? Flatten the Curve. Part 12. Source Here
Now, I'm not sure if you remember or know any Greek Mythology, but the Gorgons were three sisters, and one sister had Snakes on her head (she wasn't a lawyer) and she turned people to stone when she looked at them.
MEDUSA (Mob Excess Deterrent Using Silent Audio) is a directed-energy non-lethal weapon designed by WaveBand Corporation in 2003-2004 for temporary personnel incapacitation. The weapon is based on the microwave auditory effect resulting in a strong sound sensation in the human head when it is subject to certain kinds of pulsed/modulated microwave radiation. The developers claimed that through the combination of pulse parameters and pulse power, it is possible to raise the auditory sensation to a “discomfort” level, deterring personnel from entering a protected perimeter or, if necessary, temporarily incapacitating particular individuals. In 2005, Sierra Nevada Corporation acquired WaveBand Corporation.
Ok. Get it? The Gorgon eye in the sky stares at you while the Medusa makes you immobile. Not good, but at least it'll just freeze you in your tracks.
July 6, 2008: Gizmodo • The Sierra Nevada Corporation claimed this week that it is ready to begin production on the MEDUSA, a damned scary ray gun that uses the "microwave audio effect" to implant sounds and perhaps even specific messages inside people's heads. Short for Mob Excess Deterrent Using Silent Audio, MEDUSA creates the audio effect with short microwave pulses. The pulses create a shockwave inside the skull that's detected by the ears, and basically makes you think you're going balls-to-the-wall batshit insane. Source Here
Uhm. And drive you insane.
July 26, 2008: Gizmodo • The MEDUSA crowd control ray gun we reported on earlier this month sounded like some pretty amazing-and downright scary-technology. Using the microwave auditory effect, the beam, in theory, would have put sounds and voice-like noises in your head, thereby driving you away from the area. Crowd control via voices in your head. Sounds cool. However, it turns out that the beam would actually kill you before any of that happy stuff started taking place, most likely by frying or cooking your brain inside your skull. Can you imagine if this thing made it out into the field? Awkward! Source Here
Annnnnnnndddddd it'll kill you.
Guys, they're prepared. They've been prepared. They're ready. Remember the Doomsday Bunkers? The military moving into Cheyenne Mountain? Deep Underground Military Bunkers? The rapid rolling out of 5G? BITCOIN and UBI so neatly inserted into our minds over the last five years? They've directly told us to have three months of supplies in our homes. 2020 isn't going to be an anomaly? It's the start of the collapse of our natural resources. Take a look on Reddit and all the posts about crazy weather. Cyanobacteria blooms killing dogs and people. Toxic Super Pollution caused by atmospheric inversions killing people. This isn’t normal, this is New Normal. And they know it. They've known it for a while. Let me show you one last thing before I wrap it up.
From the earliest Chinese dynasties to the present, the jade deposits most used were not only those of Khotan in the Western Chinese province of Xinjiang but other parts of China as well, such as Lantian, Shaanxi.
Remember, words matter. Look at Gorgon Stare and Medusa. They don't randomly grab names out of a hat, or pick them because they think it sounds dystopian. They pick words for a reason.
July 7, 2017: The Warzone • There only appears to be one official news story on this exercise at all and it's available on the website of Air Mobility Command’s Eighteenth Air Force, situated at Joint Base Charleston. At the time of writing, a google shows that there were more than a half dozen more copies on other Air Force pages, as well as number of photographs. For some reason, someone appears to have taken these offline or otherwise broken all the links. Using Google to search the Defense Video Imagery Distribution System, which is the main U.S. military's public affairs hub, brings up more broken links. Oh, and unless there's been some sort of mistake, JADE HELM actually stands for the amazingly obtuse Joint Assistance for Deployment Execution Homeland Eradication of Local Militants. A separate web search for this phrase does not turn up any other results. Source Here
Now, using an acronym that indicates training to Eradicate Local Militants seems pretty dumb. It may be used in that manner if environmental collapse triggers riots, but i don't think they would warn everyone ahead of time, do you? So I dug a little bit more.
Joint Assistant for Development and Execution (JADE) is a U.S. military system used for planning the deployment of military forces in crisis situations. The U.S. military developed this automated planning software system in order to expedite the creation of the detailed planning needed to deploy military forces for a military operation. JADE uses Artificial Intelligence (AI) technology combining user input, a knowledge base of stored plans, and suggestions by the system to provide the ability to develop large-scale and complex plans in minimal time. JADE is a knowledge-based system that uses highly structured information that takes advantage of data hierarchies. An official 2016 document approved for public release titled Human Systems Roadmap Review describes plans to create autonomous weapon systems that analyze social media and make decisions, including the use of lethal force, with minimal human involvement. This type of system is referred to as a Lethal Autonomous Weapon System (LAWS). The name "JADE" comes from the jade green color seen on the island of Oahu in Hawaii where the U.S. Pacific Command (PACOM) is headquartered.
PACOM? Why isn't that command group responsible for the South China Sea?
Formerly known as United States Pacific Command (USPACOM) since its inception, the command was renamed to U.S. Indo-Pacific Command on 30 May 2018, in recognition of the greater emphasis on South Asia, especially India.
Now doesn't it look like Jade Helm is preparing for an invasion? And possibly insurrection later. Or at the same time? Or riots over WW3? Or food riots? And start thinking about why the laws are starting to exclude corporations? Then think about the mercenaries that are being contracted out by the government.
October 17, 2018: The Carolinan • In 2016, 75 percent of American forces were private contractors. In 2017, Erik Prince, former head of Blackwater, and Stephen Feinberg, head of Dyncorp, discussed plans for contractors completely taking over U.S. operations in Afghanistan. Although ultimately unsuccessful, it remains to be seen if the current administration will change its mind. Contractors are involved in almost every military task, such as intelligence analysis, logistics and training allied soldiers. Contractors are even involved in U.S. special ops missions. This is because contractors are essentially untraceable and unaccountable. Most are born in other countries; only 33 percent are registered U.S. citizens. Private military firms don’t have to report their actions to Congress, unlike the military or intelligence agencies. They also aren’t subject to the Freedom of Information Act, so private citizens and journalists aren’t allowed to access their internal documents. There are also no international laws to regulate private military firms. It’s been proven that many contractors are involved in illegal activities. The larger multinational companies sometimes hire local subcontractors. These contractors sometimes aren’t background-checked. A 2010 investigation by the Senate found that many subcontractors were linked to murders, kidnappings, bribery and anti-coalition activities. Some subcontractors even formed their own unlicensed mercenary groups after coalition forces leave. A 2010 House investigation showed evidence that the Department of Defense had hired local warlords for security services. In 2007, Blackwater contractors massacred 17 civilians. This eventually led Blackwater to being restructured and renamed as Academi. Source Here
Military Exercises. Private Defense Firms. No oversight. And it's all coming soon. Read more at Flatten the Curve. Part 20. Upcoming war and catastrophes. Source Here
Nah. I'm just fear mongering and Doomscrolling again.
Heads up and eyes open. Talk soon.
submitted by biggreekgeek to conspiracy [link] [comments]

Why i’m bullish on Zilliqa (long read)

Edit: TL;DR added in the comments
 
Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analyzed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk-reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralized and scalable in my opinion.
 
Below I post my analysis of why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise, just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction
 
The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since the end of January 2019 with daily transaction rates growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralized and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. The maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realized early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralized, secure, and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in the amount of nodes. More nodes = higher transaction throughput and increased decentralization. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue dissecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour, no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts, etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as: “A peer-to-peer, append-only datastore that uses consensus to synchronize cryptographically-secure data”.
 
Next, he states that: "blockchains are fundamentally systems for managing valid state transitions”. For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber, and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa, this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network, etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever-changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralized and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimization on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and the University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (66%) double-spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT, etc. Another thing we haven’t looked at yet is the amount of decentralization.
 
Decentralisation
 
Currently, there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so-called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralized nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics, you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching its transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end-users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public. They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public-facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers. The 5% block rewards with an annual yield of 10.03% translate to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non-custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS; shard nodes and seed nodes becoming more decentralized too, Zilliqa qualifies for the label of decentralized in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. The faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time-stamped so you’ll start right away with a platform introduction, roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalized: programming languages can be divided into being ‘object-oriented’ or ‘functional’. Here is an ELI5 given by software development academy: * “all programs have two basic components, data – what the program knows – and behavior – what the program can do with that data. So object-oriented programming states that combining data and related behaviors in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behavior are different things and should be separated to ensure their clarity.” *
 
Scilla is on the functional side and shares similarities with OCaml: OCaml is a general-purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognized by academics and won a so-called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise, it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts, it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa or Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue: In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships
 
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organizations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggests that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already take advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, Airbnb, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are built on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human-readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They don't just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data, it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community-run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non-custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiative (correct me if I’m wrong though). This suggests in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real-time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding of what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures, Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

Where can you actually SPEND dogecoins? [Please Add on]

When trying to explain dogecoin to people for the first time, the #1 question I get is "Yeah but, can you actually use it to buy things?"
One of the major things that will take Dogecoin to the moon will be people actually using the Ð. For a currency to gain legitimacy, it's got to be spendable. The good news is, there are sites popping up that take the Ð! Some sites also list other sites that take the Ð and serve as directories. Considering how great this community is and how quickly we are growing, the number of transactions and using Ð as real money could really make the difference!

~ ~ ~ Dogecoin Stuff ~ ~ ~

CoinOK - Various Dogecoin Articles cocomfy - Various Dogecoin Articles DogeWow - Dogecoin Shirts KawaiiCrypto - Dogecoin/Crypto Stickers Shibe Mint - Physical Dogecoins

~ ~ ~ Clothing ~ ~ ~

BedlamThreadz - Shirts, Caps and Accessories BitDials - Luxury Watches, Jewelry, Bags etc. ClockworkCrypto - Crypto Clothes and merch CrownLifestyle - Beach Articles, Bikinis, Swimsuits, Towels etc. CryptoBantam - Crypto Clothes Cryptoish - Crypto Shirts CryptoShopper - Crypto Clothes and merch CryptoVerge - Bitcoin Shirts CypherMarket - Crypto Shirts, Bags and Mugs Eat Me Clothing - Huge Clothing Sortiment Encrypted Apparel - Crypto Clothes Frank & Beans - Underwear HippTee - Crypto Shirts KALEIDOO - Vintage Clothing Kryptoez - Socks Krypto Threadz - Crypto Clothes MyCoconutHeart - Women Clothes MyCryptoGear - Crypto Clothes ParkAndFinch - Glasses Print-Ted - Crypto merchandise collection and Design your own shirt Sakama - Leather Jackets & handknotted rugs The DOTA scene - DOTA Merchandise WhaleApparel - Crypto Clothes

~ ~ ~ Donating ~ ~ ~

Animal Neotropical - D5ivRQwT4TU8CEjNBhorpMKSe8bVkMYURQ archive.org - via changelly DogecoinSocksForTheHomeless - 9vnaTWu71XWimFCW3hctSxryQgYg7rRZ7y Doge4FAH - DUCKvJPNT16USvJmWWEwchZpRVHZwm4zRW Immunity Project - DMx7wPZ5ppZDEDWr1XSrpMdMRbGH7LXs97 Kamikaze Comics - DC8Tuid8X3Qwnpo5cvBum19w2LRWXfepqr Onwadan Foundation - via coinpayments.net Tor Project - DGvn1HLeMaCZEZZYUeBWBhUCJiS2hjzbGd

~ ~ ~ Food ~ ~ ~

35North - Extra Virgin Olive Oil Blockchain Coffee - Coffee DrApis - Raw Portuguese Bee Honey HODL Fuel - Coffee and Merch PexPeppers - Hot Sauces SaffronStore - Saffron

~ ~ ~ Gaming ~ ~ ~

8BitDo - French Retro Products Allgamer - Game Servers CJS CD Keys - Steam/Origin/Uplay Games/Keys Gamesonly.at - Steam/Origin/Uplay Games/Keys Keys4Coins - Steam/Origin/Uplay Games/Keys MMOGA - Steam/Origin/Uplay Games/Keys SimRai - Game Servers

~ ~ ~ Gift Cards ~ ~ ~

Bidali - Various Gift Cards Bitrefill - 750+ Gift Cards CoinCards - Huge Selection of Gift Cards GiftOff - Gift Cards

~ ~ ~ Smoking ~ ~ ~

101Vape - Vape Products Frontier Vapor - Vape Accessories RX Vape - Vape Products Vape Crypto - Vape Products VapePENstore - Vape Products Vaposhop - Vape Products Vapour Depot - Vape Products

~ ~ ~ Tech Stores ~ ~ ~

ArgoMall - Philippine Online Tech Store, Smartphones, TVs, Laptops, etc. DS Tec - Spanish Online Tech Store Ecosystems - Huge selection of Tech Articles FastTech - Wide Variety of Tech Articles

~ ~ ~ Traveling ~ ~ ~

Bitcoin.travel - Flight and Hotel Booking Greitai - Lithuanian Travel Site with Flight and Hotel Booking MoreStamps - Flight and Hotel Booking Travala - Hotel Booking Trippki - Hotel Booking

~ ~ ~ VPN/Proxy ~ ~ ~

AzireVPN - VPN BlackVPN - VPN CactusVPN - VPN DeepWebVPN - VPN HideMy.name - VPN PureVPN - VPN SaferVPN - VPN Surfshark - VPN TorGuard - VPN

~ ~ ~ Web Hosting ~ ~ ~

97cents - Web Hosting AbacoHosting - Web Hosting CoinHost - Web Hosting CryptoCloudHosting - Web Hosting Flokinet - Web Hosting HosterBox - Web Hosting Host Havoc - Web Hosting & Game Servers Hosting.co.uk - Web Hosting Hostinger - Web Hosting Hostsailor - Web Hosting Hostwinds - Web Hosting Motov - Web Hosting Privex - Private Cloud Hosting Snel - VPS THCservers - Web Hosting QHoster - Web Hosting

~ ~ ~ Misc ~ ~ ~

247bits - Crypto Cold Storage Cards AlmightyBoost - All Natural Male Testosterone Booster BitCars - Luxury Cars and Oldtimers BitStickers - Cryptocurrency Stickers BitStore - General Store with option to pay literally everything you want online with Dogecoin BlockchainAdventures - "Toshi to the moon" book and merch BP Fragrance - Dutch perfumes shop Bullion79 - Gold Coins, Gold Bars, etc. CleanItSupply - Cleaning Supplies Coinvibe - Crypto Merch CryptoArt - Crypto Art CryptoContactLenses - Contact Lenses CryptoLife - Crypto Merch CryptoMined - Crypto Mining Equipment Crypto Posters - Crypto Posters, shirts, hats, phone cases CryptoUniverse - Crypto Mining Equipment GPS Tracking Made Easy - Easy & Simple GPS Tracker Kits Jobgate - Job Market payed with Dogecoins Lue's House of International Decor - Decor Articles Lynx Art Collection - Art MobiSun - Solar Panels, Power Banks, Solar Generators Molecule Store - Various Articles about molecules Olympian Bitcoin - Crypto Merch Peername - Blockchain-Based Domain Names Pi-Supply - Raspberry Pi and accessories ShopOfThings - Electronic Tech Parts SugarTrends - Huge local stores online marketplace ThaiBaM - Coffee, Tea, Oils, Balms etc. TormentBox - Various prank articles like glitter letters etc. WikiLeaks Shop - Official Shirts, Mugs, Stickers, Posters, etc.
Disclaimer:

All links are provided with the best of my knowledge.Please make sure to check the shops listed here yourself again, before spending your Dogecoins there.In no way should the admin of this website be responsible for any fraudulently activities from any listed shop.

Thanks to Dimi for the links
DimiFWDonate: D62WT9ebWbVW8QtBE57TE8CUaH3s95T3dN
📷
submitted by SoiledCold5 to dogecoin [link] [comments]

Why i’m bullish on Zilliqa (long read)

Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analysed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralised and scalable in my opinion.
 
Below I post my analysis why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since end of January 2019 with daily transaction rate growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralised and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. Maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realised early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralised, secure and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in amount of nodes. More nodes = higher transaction throughput and increased decentralisation. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue disecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as:
“A peer-to-peer, append-only datastore that uses consensus to synchronise cryptographically-secure data”.
 
Next he states that: >“blockchains are fundamentally systems for managing valid state transitions”.* For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralised and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimisation on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (>66%) double spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT etc. Another thing we haven’t looked at yet is the amount of decentralisation.
 
Decentralisation
 
Currently there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralised nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching their transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public.They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers.The 5% block rewards with an annual yield of 10.03% translates to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS & shard nodes and seed nodes becoming more decentralised too, Zilliqa qualifies for the label of decentralised in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. Faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time stamped so you’ll start right away with a platform introduction, R&D roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalised: programming languages can be divided into being ‘object oriented’ or ‘functional’. Here is an ELI5 given by software development academy: > “all programmes have two basic components, data – what the programme knows – and behaviour – what the programme can do with that data. So object-oriented programming states that combining data and related behaviours in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behaviour are different things and should be separated to ensure their clarity.”
 
Scilla is on the functional side and shares similarities with OCaml: > OCaml is a general purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognised by academics and won a so called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities safety is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa for Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue:
In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships  
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organisations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggest that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already taking advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, AirBnB, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are build on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”*
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They dont just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities) also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiatives (correct me if I’m wrong though). This suggest in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures & Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

IoT Testing !!!

IoT is a whole ecosystem that contains intelligent devices equipped with sensors (sensors) that provide remote control, storage, transmission and security of data. The Internet of Things (IoT) is an innovative solution in various areas such as healthcare, insurance, labor protection, logistics, ecology, etc. To unleash the full potential of using IoT devices, it is necessary to solve many problems related to standards, security, architecture, ecosystem construction, channels and device connection protocols. Today in the world, large organizations such as NIST, IEEE, ISO / IEC, and others make enormous efforts in addressing the issues of standardization, security, and the architecture of developed devices. Analysis of recent scientific research in the field of solving information security issues and data privacy of IoT devices showed positive results, but these methods and approaches are based on traditional methods of network security. The development and application of security mechanisms for IoT devices is a complex and heterogeneous task. In this regard, ensuring information security and the protection of sensitive data, as well as the availability of IoT devices, is the main purpose of writing this article. Given the above, many questions arise related to the security status of IoT devices, namely: What are the current standards and protocols for IoT? What are the requirements for ensuring information security of IoT devices? What security mechanisms do IoT devices have? What methods of testing IoT devices exist? Manufacturers and developers of IoT devices do not pay enough attention to security issues. With the development of cyber-attacks, attack vectors are becoming more sophisticated and aimed at several infrastructure elements at the same time. IoT infrastructure typically includes millions of connected objects and devices that store and share confidential information. Scenarios of theft and fraud, such as hacking and falsifying personal data, pose a serious threat to such IoT devices. Most IoT devices use the public Internet to exchange data, which makes them vulnerable to cyber-attacks. Modern approaches to information security often offer solutions to individual problems, when multi-level approaches offer increased resistance to cyber-attacks.
Challenges of testing IoT devices
To a request to name essential items, many would answer: food, a roof over your head, clothes … With one caveat: this was the case in the last century.
Since then, the species Homo Sapiens has accumulated needs. We need automatic sensors to control the lighting, not just switches, for smart systems to monitor health and car traffic. The list goes on … In general, we can make life easier and better.
Let’s try to figure out how all this Internet of things works before moving on to testing.
IoT testing
Content
What is the Internet of Things (IoT)? Examples of IoT devices # 1) Wearable technology: # 2) Infrastructure and development # 3) Health Technologies that are present in IoT IoT Testing # 1) Usability: # 2) IoT Security: # 3) Network features: # 4) Efficiency: # 5) Compatibility testing: # 6) Pilot testing: # 7) Check for compliance: # 8) Testing updates: IoT testing challenges # 1) Hard / soft # 2) Device Interaction Model # 3) Testing data coming in real time # 4) UI # 5) Network Availability IoT Testing Tools # 1) Software: # 2) Hard: Total What is the Internet of Things (IoT)? The Internet of things (or IoT) is a network that combines many objects: vehicles, home automation, medical equipment, microchips, etc. All these constituent elements accumulate and transmit data. Through this technology, the user controls the devices remotely.

Examples of IoT devices

# 1) Wearable technology: Fitbit Fitness Bracelets and Apple Watch smart watches sync seamlessly with other mobile devices.

IoT – watches and bracelets

Itís easier to collect health information: heart rate, body activity during sleep, etc.
# 2) Infrastructure and development The CitySense app analyzes lighting data online and turns lights on and off automatically. There are applications that control traffic lights or report on the availability of parking lots.
# 3) Health Some health monitoring systems are used in hospitals. The basis of their work is indicative data. These services control the dosage of drugs at different times of the day. For example, the UroSense application monitors the level of fluid in the body and, if necessary, increases this level. And doctors will learn about patient information wirelessly.
Technologies that are present in IoT RFID (Radio Frequency Identification), EPC (Electronic Product Code) NFC (ìNear Field Communicationî) provides two-way communication between devices. This technology is present in smartphones and is used for contactless transactions.
Bluetooth It is widely used in situations where near-field communication is sufficient. Most often present in wearable devices. Z-Wave. Low frequency RF technology. Most often used for home automation, lighting control, etc. WiFi. The most popular network for IoT (file, data and message transfer). IoT Testing Consider an example : a medical system that monitors health status, heart rate, fluid content, and sends reports to healthcare providers. Data is displayed in the system; archives available. And doctors are already deciding whether to take medication for the patient remotely.
IoT architecture
There are several approaches for testing the IoT architecture.
# 1) Usability: It is necessary to provide usability testing of each device. A medical device that monitors your health should be portable.
Sufficiently thought out equipment is needed that would send not only notifications, but also error messages, warnings, etc. The system must have an option that captures events, so that the end user understands. If this is not possible, event information is stored in the database. The ability to process data and exchange tasks between devices is carefully checked. # 2) IoT Security: Data is at the heart of all connected devices. Therefore, unauthorized access during data transfer is not ruled out. From the point of view of software testing, it is necessary to check how secure / encrypted the data is. If there is a UI, you need to check if it is password protected. # 3) Network features: Network connectivity and IoT functionality are critical. After all, we are talking about a system that is used for health purposes. Two main aspects are tested: The presence of a network , the possibility of data transfer (whether jobs are transferred from one device to another without any hitch). The scenario when there is no connection . Regardless of the level of reliability of the system, it is likely that the status of the system will be ìofflineî. If the network is unavailable, employees of the hospital or other organization need to know about it (notifications). Thus, they will be able to monitor the condition of the patient themselves, and not wait for the system to work. On the other hand, in such systems there is usually a mechanism that saves data if the system is offline. That is, data loss is eliminated. # 4) Efficiency: It is necessary to take into account the extent to which the healthcare solution is applicable in specific conditions. In testing, from 2 to 10 patients participate, data is transmitted to 10-20 devices. If the entire hospital is connected to the network, this is already 180-200 patients. That is, there will be more actual data than test data. In addition, it is necessary to test the utility for monitoring the system: current load, power consumption, temperature, etc. # 5) Compatibility testing: This item is always present in the plan for testing the IoT system. The compatibility of different versions of operating systems, browser types and their respective versions, devices of different generations, communication modes [for example, Bluetooth 2.0, 3.0] is extremely important for IoT. # 6) Pilot testing: Pilot testing is a mandatory point of the test plan. Only tests in the laboratory will allow us to conclude that the system is functional. In pilot testing, the number of users is limited. They make manipulations with the application and express their opinion. These comments turn out to be very helpful, they make a reliable application. # 7) Check for compliance: The system, which monitors the state of health, undergoes many compliance checks. It also happens that a software product passes all stages of testing, but fails the final test for compliance [testing is carried out by the regulatory body]. It is more advisable to check for compliance with norms and standards before starting the development cycle. # 8) Testing updates: IoT is a combination of many protocols, devices, operating systems, firmware, hardware, network layers, etc. When an update occurs – be it a system or something else of the above – rigorous regression testing is required. The overall strategy is being amended to avoid the difficulties associated with the upgrade.

IoT testing challengesIoT testing

# 1) Hard / soft IoT is an architecture in which software and hardware components are closely intertwined. Not only software is important, but also hard: sensors, gateways, etc.
Functional testing alone will not be enough to certify the system. All components are interdependent. IoT is much more complicated than simpler systems [only software or only hard].
# 2) Device Interaction Model Components of the network must interact in real time or close to real. All this becomes a single whole – hence the additional difficulties associated with IoT (security, backward compatibility and updates).
# 3) Testing data coming in real time Obtaining this data is extremely difficult. The matter is complicated by the fact that the system, as in the described case, may relate to the health sector.
# 4) UI An IoT network usually consists of different devices that are controlled by different platforms [iOS, Android, Windows, linux]. Testing is possible only on some devices, since testing on all possible devices is almost impossible.
# 5) Network Availability Network connectivity plays an important role in IoT. The data rate is increasing. IoT architecture should be tested under various connection conditions, at different speeds. Virtual network emulators in most cases are used to diversify network load, connectivity, stability, and other elements of load testing . But the evidence is always new scenarios, and the testing team does not know where the difficulties will arise in the future.

IoT Testing ToolsIoT and software

There are many tools that are used in testing IoT systems.
They are classified depending on the purpose:
# 1) Software: Wireshark : An open source tool. Used to monitor traffic in the interface, source / given host address, etc. Tcpdump : This tool does a similar job. The utility does not have a GUI, its interface is the command line. It enables the user to flash TCP / IP and other packets that are transmitted over the network. # 2) Hard: JTAG Dongle: A tool similar to debuggers in PC applications. Allows you to find defects in the code of the target platform and shows the changes step by step. Digital Storage Oscilloscope : checks various events using time stamps, power outages, signal integrity. Software Defined Radio : emulates a transmitter and receiver for various wireless gateways. IoT is an emerging market and many opportunities. In the foreseeable future, the Internet of things will become one of the main areas of work for tester teams. Network devices, smart gadget applications, communication modules – all this plays an important role in the study and evaluation of various services.
Total The approach to testing IoT may vary depending on the specific system / architecture.
Itís difficult to test IoT, but at the same time itís an interesting job, since testers have a good place to swing – there are many devices, protocols and operating systems.
PS You should try out the TAAS format (“tests from the user’s point of view”), and not just fulfill the formal requirements.
—————
Smart watches, baby-sitters, wireless gadgets and devices such as, for example, a portable radio station have long been part of everyday life.
Hackers have already proven that many of these attacks on IoT are possible.
Many people in general first learned about IoT security threats when they heard about the Mirai botnet in September 2016.
According to some estimates, Mirai infected about 2.5 million IoT devices, including printers, routers and cameras connected to the Internet.
The botnetís creators used it to launch distributed denial of service (DDoS) attacks, including an attack on the KrebsonSecurity cybersecurity blog.
In fact, the attackers used all devices infected with Mirai to try to connect to the target site at the same time, in the hope of suppressing the servers and preventing access to the site.
Since Mirai was first published on the news, attackers launched other botnet attacks on IoT, including Reaper and Hajime.
Experts say that such attacks are most likely in the future.
The Internet of Things (IoT) can bring many advantages to modern life, but it also has one huge drawback: security threats.
In its 2018 IOT forecasts, Forroter Research notes: ìSecurity threats are a major concern for companies deploying IoT solutions – in fact, this is the main task of organizations looking to deploy IoT solutions.
However, most firms do not regularly prevent IoT-specific security threats, and business pressure suppresses technical security issues. î
IoT security risks can be even more significant on the consumer side, where people are often unaware of potential threats and what they should do to avoid threats.
A 2017 IoT security survey sponsored by Gemalto Security Provider found that only 14 percent of consumers surveyed consider themselves IoT-aware.
This number is particularly noteworthy because 54 percent of the respondents owned an average of four IoT devices.
And these IoT security threats are not just theoretical.
Hackers and cybercriminals have already found ways to compromise many IoT devices and networks, and experts say that successful attacks are likely to increase.
Forrester predicted: “In 2018, we will see more attacks related to IoT … except that they will increase in scale and loss.”
What types of IoT security threats will enterprises and consumers face in 2018?
Based on historical precedent, here are ten of the most likely types of attacks.
  1. Botnets and DDoS attacks
  2. Remote recording The possibility that attackers can hack IoT devices and record owners without their knowledge is not revealed as a result of the work of hackers, but as a result of the work of the Central Intelligence Agency (CIA).
Documents released by WikiLeaks implied that the spy agency knew about dozens of zero-day exploits for IoT devices, but did not disclose errors, because they hoped to use vulnerabilities to secretly record conversations that would reveal the actions of alleged opponents of America.
Documents pointed to vulnerabilities in smart TVs, as well as on Android and iOS smartphones.
The obvious consequence is that criminals can also exploit these vulnerabilities for their vile purposes.
  1. Spam In January 2014, one of the first known attacks using IoT devices used more than 100,000 Internet-connected devices, including televisions, routers, and at least one smart refrigerator to send 300,000 spam emails per day.
The attackers sent no more than 10 messages from each device, which makes it very difficult to block or determine the location of the incident.
This first attack was not far from the last.
IoT spam attacks continued in the fall with the Linux.ProxyM IoT botnet.
  1. APTs In recent years, advanced persistent threats (APTs) have become a serious concern for security professionals.
APTs are carried out by funded and widespread attackers such as nation states or corporations that launch complex cyberattacks that are difficult to prevent or mitigate.
For example, the Stuxnet worm, which destroyed Iranian nuclear centrifuges and hacking Sony Pictures 2014, was attributed to nation states.
Because the critical infrastructure is connected to the Internet, many experts warn that APTs may launch a power-oriented IoT attack, industrial control systems, or other systems connected to the Internet.
Some even warn that terrorists could launch an attack on iOT, which could harm the global economy.
  1. Ransomware Ransomware has become too common on home PCs and corporate networks. Now experts say that it is only a matter of time before the attackers begin to block smart devices. Security researchers have already demonstrated the ability to install ransomware on smart thermostats. For example, they can raise the temperature to 95 degrees and refuse to return it to its normal state until the owner agrees to pay a ransom in Bitcoins. They can also launch similar attacks on garage doors, vehicles, or even appliances. How much would you pay to unlock your smart coffee pot first thing in the morning?
  2. Data theft Obtaining important data, such as customer names, credit card numbers, social security numbers, and other personal information, is still one of the main goals of cyber attacks.
IoT devices represent a whole new vector of attack for criminals looking for ways to invade corporate or home networks.
For example, if an improperly configured device or IoT sensor is connected to corporate networks, this can give attackers a new way to enter the network and potentially find the valuable data that they need.
  1. Home theft As smart locks and smart garage doors become more commonplace, it is also more likely that cybercriminals can become real thieves.
Home systems that are not properly protected can be vulnerable to criminals with sophisticated tools and software.
Security researchers are unlikely to have shown that itís quite easy to break into a house through smart locks from several different manufacturers, and smart garage doors do not seem to be much safer.
  1. Communication with children One of the most disturbing IoT security stories came from children.
One couple discovered that the stranger not only used his monitor for children to spy on their three-year-old son, this stranger also spoke with his child through the device.
Mother heard an unknown voice: ìWake up, boy, dad is looking for you,î and the child said that he was scared because at night someone was talking to him on an electronic device.
As more and more children’s gadgets and toys connect to the Internet, it seems likely that these frightening scenarios may become more common.
  1. Remote control of a vehicle As vehicles become smarter and more accessible on the Internet, they also become vulnerable to attack.
Hackers have shown that they can take control of a jeep, maximize air conditioning, change the radio station, start the wipers, and ultimately slow down the car.
The news led to the recall of 1.4 million cars, but whitehat researchers, following the original exploit, said they discovered additional vulnerabilities that were not fixed by the Chrysler patch applied to the recalled cars.
Although experts say the automotive industry is doing a great job of ensuring vehicle safety, it is almost certain that attackers will find new vulnerabilities in such smart cars.
  1. Personal attacks Sometimes IoT covers more than just devices – it can also include people who have connected medical devices implanted in their bodies.
An episode of the television series Homeland attempted a murder aimed at an implanted medical device, and former vice president Dick Cheney was so worried about this scenario that he turned off the wireless capabilities on his implanted defibrillator.
This kind of attack has not yet happened in real life, but it remains possible, as many medical devices become part of the IoT.
submitted by farabijfa to u/farabijfa [link] [comments]

Secure paper wallet tutorial

This is my handout for paranoid people who want a way to store bitcoin safely. It requires a little work, but this is the method I use because it should be resistant to risks associated with:
  1. Bad random number generators
  2. Malicious or flawed software
  3. Hacked computers
If you want a method that is less secure but easier, skip to the bottom of this post.
The Secure Method
  1. Download bitaddress.org. (Try going to the website and pressing "ctrl+s")
  2. Put the bitaddress.org file on a computer with an operating system that has not interacted with the internet much or at all. The computer should not be hooked up to the internet when you do this. You could put the bitaddress file on a USB stick, and then turn off your computer, unplug the internet, and boot it up using a boot-from-CD copy of linux (Ubuntu or Mint for example). This prevents any mal-ware you may have accumulated from running and capturing your keystrokes. I use an old android smart phone that I have done a factory reset on. It has no sim-card and does not have the password to my home wifi. Also the phone wifi is turned off. If you are using a fresh operating system, and do not have a connection to the internet, then your private key will probably not escape the computer.
  3. Roll a die 62 times and write down the sequence of numbers. This gives you 2160 possible outcomes, which is the maximum that Bitcoin supports.
  4. Run bitaddress.org from your offline computer. Input the sequence of numbers from the die rolls into the "Brain Wallet" tab. By providing your own source of randomness, you do not have to worry that the random number generator used by your computer is too weak. I'm looking at you, NSA ಠ_ಠ
  5. Brain Wallet tab creates a private key and address.
  6. Write down the address and private key by hand or print them on a dumb printer. (Dumb printer means not the one at your office with the hard drive. Maybe not the 4 in 1 printer that scans and faxes and makes waffles.) If you hand copy them you may want to hand copy more than one format. (WIF and HEX). If you are crazy and are storing your life savings in Bitcoin, and you hand copy the private key, do a double-check by typing the private key back into the tool on the "Wallet Details" tab and confirm that it recreates the same public address.
  7. Load your paper wallet by sending your bitcoin to the public address. You can do this as many times as you like.
  8. You can view the current balance of your paper wallet by typing the public address into the search box at blockchain.info
  9. If you are using an old cell phone or tablet do a factory reset when you are finished so that the memory of the private keys is destroyed. If you are using a computer with a boot-from-CD copy of linux, I think you can just power down the computer and the private keys will be gone. (Maybe someone can confirm for me that the private keys would not be able to be cached by bitaddress?)
  10. To spend your paper wallet, you will need to either create an offline transaction, or import the private key into a hot wallet. Creating an offline transaction is dangerous if you don't know what you are doing. Importing to a client side wallet like Bitcoin-Qt, Electrum, MultiBit or Armory is a good idea. You can also import to an online wallet such as Blockchain.info or Coinbase.
Trusting bitaddress.org
The only thing you need bitaddress.org to do is to honestly convert the brainwallet passphrase into the corresponding private key and address. You can verify that it is doing this honestly by running several test passphrases through the copy of bitaddress that you plan on using, and several other brainwallet generators. For example, you could use the online version of bitaddress, and brainwallet and safepaperwallet and bitcoinpaperwallet. If you are fancy with the linux command line, you can also try "echo -n my_die_rolls | sha256sum". The linux operating system should reply with the same private key that bitaddress makes. This protects you from a malicious paper wallet generator.
Trusting your copy of bitaddress.org
Bitaddress publishes the sha1 hash of the bitaddress.org website at this location:
https://www.bitaddress.org/pgpsignedmsg.txt
The message is signed by the creator, pointbiz. I found his PGP fingerprint here:
https://github.com/pointbiz/bitaddress.org/issues/18
"527B 5C82 B1F6 B2DB 72A0 ECBF 8749 7B91 6397 4F5A"
With this fingerprint, you can authenticate the signed message, which gives you the hash of the current bitaddress.org file. Then you can hash your copy of the file and authenticate the file.
I do not have a way to authenticate the fingerprint itself, sorry. According to the website I linked to, git has cryptographic traceability that would enable a person to do some research and authenticate the fingerprint. If you want to go that far, knock yourself out. I think that the techniques described in this document do not really rely on bitaddress being un-corrupt. Anyway, how do we know pointbiz is a good guy? ;-)
There are a lot of skilled eyes watching bitaddress.org and the signed sha1 hash. To gain the most benefit from all of those eyes, it's probably worthwhile to check your copy by hashing it and comparing to the published hash.
"But we aren't supposed to use brainwallets"
You are not supposed to use brainwallets that have predictable passphrases. People think they are pretty clever about how they pick their passphrases, but a lot of bitcoins have been stolen because people tend to come up with similar ideas. If you let dice generate the passphrase, then it is totally random, and you just need to make sure to roll enough times.
How to avoid spending your life rolling dice
When I first started doing this, I rolled a die 62 times for each private key. This is not necessary. You can simply roll the die 62 times and keep the sequence of 62 numbers as a "seed". The first paper address you create would use "my die rolls-1" as the passphrase, the second would be "my die rolls-2" and so on. This is safe because SHA256 prevents any computable relationship between the resulting private key family.
Of course this has a certain bad security scenario -- if anyone obtains the seed they can reconstruct all of your paper wallets. So this is not for everyone! On the other hand, it also means that if you happen to lose one of your paper wallets, you could reconstruct it so long as you still had the seed.
One way to reduce this risk is to add an easy to remember password like this: "my die rolls-password-1".
If you prefer, you can use a technique called diceware to convert your die rolls to words that still contain the same quantity of entropy, but which could be easier to work with. I don't use diceware because it's another piece of software that I have to trust, and I'm just copy/pasting my high entropy seed, so I don't care about how ugly it is.
Why not input the dice as a Base 6 private key on the Wallet Details tab?
Two reasons. First of all, this option requires that you roll the die 99 times, but you do not get meaningful additional protection by rolling more than 62 times. Why roll more times if you don't have to? Second, I use the "high entropy seed" method to generate multiple private keys from the same die rolls. Using the Base 6 option would require rolling 99 times for every private key.
I'm a big nerd with exotic dice. How many times to roll?
Put this formula in Excel to get the number of times to roll: "=160*LOG(2,f)" where f = number of faces on the die. For example, you would roll a d16 40 times. By the way, somewhat unbelievably casino dice are more fair than ordinary dice
The "Change address" problem:
You should understand change addresses because some people have accidentally lost money by not understanding it.
Imagine your paper wallet is a 10 dollar bill. You use it to buy a candy bar. To do this you give the cashier the entire 10 dollar bill. They keep 1 dollar and give you 9 dollars back as change.
With Bitcoin, you have to explicitly say that you want 9 dollars back, and you have to provide an address where it should go to. If you just hand over the 10 dollar bill, and don't say you want 9 dollars back, then the miner who processes the transaction gives 1 dollar to the store and keeps the remainder themselves.
Wallet software like Bitcoin-Qt handles this automatically for you. They automatically make "change addresses" and they automatically construct transactions that make the change go to the change address.
There are three ways I know of that the change problem can bite you:
  1. You generate a raw transaction by hand, and screw up. If you are generating a transaction "by hand" with a raw transaction editor, you need to be extra careful that your outputs add up to the same number as your inputs. Otherwise, the very lucky miner who puts your transaction in a block will keep the difference.
  2. You import a paper wallet into a wallet software and spend part of it, and then think that the change is in the paper wallet. The change is not in the paper wallet. It is in a change address that the wallet software generated. That means that if you lose your wallet.dat file you will lose all the change. The paper wallet is empty.
  3. You import a paper wallet into a wallet software and spend part of it, and then think that the change is in the change address that the wallet software generated. If the transaction did not need to consume all of the "outputs" used to fund the paper wallet, then there could be some unspent outputs still located at the address of the paper wallet. If you destroyed the paper wallet, and destroyed the copy of the private key imported to the wallet software, then you could not access this money. (E.g. if you restored the software wallet from its seed, thinking all of the money was moved to the wallet-generated change addresses.)
For more on this, see here
The hot paper wallet problem
Your bitcoin in your paper wallet are secure, so long as the piece of paper is secure, until you go to spend it. When you spend it, you put the private key onto a computer that is connected to the internet. At this point you must regard your paper wallet address as hot because the computer you used may have been compromised. It now provides much less protection against theft of your coins. If you need the level of protection that a cold paper wallet provides, you need to create a new one and send your coins to it.
Destroying your paper wallet address
Do not destroy the only copy of a private key without verifying that there is no money at that address. Your client may have sent change to your paper wallet address without you realizing it. Your client may have not consumed all of the unspent outputs available at the paper wallet address. You can go to blockchain.info and type the public address into the search window to see the current balance. I don't bother destroying my used/empty paper wallet addresses. I just file them away.
Encrypting your private key
BIP 0038 describes a standardized way to encrypt your paper wallet private key. A normal paper wallet is vulnerable because if anyone sees the private key they can take the coins. The BIP38 protocol is even resistant to brute force attacks because it uses a memory intensive encryption algorithm called scrypt. If you want to encrypt your wallets using BIP38, I recommend that you use bitcoinpaperwallet because they will let you type in your own private key and will encrypt it for you. As with bitaddress, for high security you should only use a local copy of this website on a computer that will never get connected to the internet.
Splitting your private key
Another option for protecting the private key is to convert it into multiple fragments that must be brought together. This method allows you to store pieces of your key with separate people in separate locations. It can be set up so that you can reconstitute the private key when you have any 2 out of the 3 fragments. This technique is called Shamir's Secret Sharing. I have not tried this technique, but you may find it valuable. You could try using this website http://passguardian.com/ which will help you split up a key. As before, you should do this on an offline computer. Keep in mind if you use this service that you are trusting it to work properly. It would be good to find other independently created tools that could be used to validate the operation of passguardian. Personally, I would be nervous destroying the only copy of a private key and relying entirely on the fragments generated by the website.
Looks like Bitaddress has an implementation of Shamir's Secret Sharing now under the "Split Wallet" tab. However it would appear that you cannot provide your own key for this, so you would have to trust bitaddress.
Durable Media
Pay attention to the media you use to record your paper wallet. Some kinds of ink fade, some kinds of paper disintegrate. Moisture and heat are your enemies.
In addition to keeping copies of my paper wallet addresses I did the following:
  1. Order a set of numeric metal stamps. ($10)
  2. Buy a square galvanized steel outlet cover from the hardware store ($1)
  3. Buy a sledgehammer from the hardware store
  4. Write the die rolls on the steel plate using a sharpie
  5. Use the hammer to stamp the metal. Do all the 1's, then all the 2's etc. Please use eye protection, as metal stamp may emit sparks or fly unexpectedly across the garage. :-)
  6. Use nail polish remover to erase the sharpie
Electrum
If you trust electrum you might try running it on an offline computer, and having it generate a series of private keys from a seed. I don't have experience with this software, but it sounds like there are some slick possibilities there that could save you time if you are working with a lot of addresses.
Message to the downvoters
I would appreciate it if you would comment, so that I can learn from your opinion. Thanks!
The Easy Method
This method is probably suitable for small quantities of bitcoin. I would not trust it for life-altering sums of money.
  1. Download the bitaddress.org website to your hard drive.
  2. Close your browser
  3. Disconnect from the internet
  4. Open the bitaddress.org website from your hard drive.
  5. Print a paper wallet on your printer
  6. Close your browser
submitted by moral_agent to BitcoinWallet [link] [comments]

Bitcoin Hack 30 BTC Free Bitcoin Mining Blockchain Script ... Noob's Guide To Bitcoin Mining - Super Easy & Simple - YouTube Hardware Bitcoin Brain Wallet Generator Andreas Popp: Was steckt hinter der Bitcoin-Hysterie ... NEW Bitcoin Hack 2020 BTC for free - YouTube

Version 1 UUID Generator Generate a version 1 UUID. Bulk Version 1 UUID Generation. How Many? Generate . Download to a file. What is a Version 1 UUID? A Version 1 UUID is a universally unique identifier that is generated using a timestamp and the MAC address of the computer on which it was generated. Version 4 UUID Generator Generate a version 4 UUID. Bulk Version 4 UUID Generation. How Many ... Start listing at this protection timestamp. Type: timestamp (allowed formats) ptend. Stop listing at this protection timestamp. Type: timestamp (allowed formats) ptprop. Which properties to get: timestamp Adds the timestamp of when protection was added. user Adds the user that added the protection. userid Adds the user ID that added the ... Bitcoincharts is the world's leading provider for financial and technical data related to the Bitcoin network. It provides news, markets, price charts and more. FIPS 181—Automated Password Generator—describes a standard process for converting random bits (from a hardware random number generator) into somewhat pronounceable "words" suitable for a passphrase. However, in 1994 an attack on the FIPS 181 algorithm was discovered, such that an attacker can expect, on average, to break into 1% of accounts that have passwords based on the algorithm, after ... Wiki is pretty basic on this spot. Stack Exchange Network Stack Exchange network consists of 176 Q&A communities including Stack Overflow , the largest, most trusted online community for developers to learn, share their knowledge, and build their careers.

[index] [38835] [46511] [30872] [4446] [32118] [38078] [40768] [48462] [43679] [2715]

Bitcoin Hack 30 BTC Free Bitcoin Mining Blockchain Script ...

Gier frisst Hirn. Diese einfache Erkenntnis ist nicht neu. Denken wir nur an die börseneuphorische dot.com-Blase, die sich vor knapp 20 Jahren weltweit aufba... This demo shows a prototype bitcoin brain wallet generator. Generation is done entirely offline ensuring the brain wallet pass phrase and private key are kept safely away from the reach of malware. The virtual goldrush to mine Bitcoin and other cryptocurrencies leads us to Central Washington state where a Bitcoin mine generates roughly $70,000 a day min... Start trading Bitcoin and cryptocurrency here: http://bit.ly/2Vptr2X Bitcoin is the first decentralized digital currency. All Bitcoin transactions are docume... Bitcoin für Anfänger einfach erklärt! [auf Deutsch] Bitcoin-Börse (erhalte 10€ in BTC) https://finanzfluss.de/go/bitcoin-boerse *📱 Sicheres Bitcoin-Wallet...

#